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Figure	3:	Scheme	Operations
Figure	1:	Homomorphic	Operations

Figure	2:	Desired	Model

• Data	privacy	is	important	for	healthcare	data,	
secure	computation,	etc.

• Homomorphic encoding	scheme: supports	
operations	on	encoded	data	(Fig	1)

• Fully	homomorphic scheme: supports	arbitrary	
number	of	additions	and multiplications	[1]

Objective: Implement FHE scheme to allow user to
outsource computation (the function f) to some
“cloud” (separate user, supercomputer, etc.)
without revealing any data (Fig 2)

Problems:	time	and	memory
• Costly	large	integers	used	for	security
• Costly	“Recode”	operation,	used	to	mitigate	noise	
growth	(red	in	Fig	3)	

Hypothesis: A parallelized implementation will
mitigate data transformation costs and make fully
homomorphic encoding feasible

Scheme	used:	Dijk	et	al.’s	fully	homomorphic	
encoding	scheme	over	the	integers	[2]
• Operations	listed	in	Fig	3
Theoretical	Improvements:
• Compressed	public	key	size	[3]
• Batched	data	(multiple	bits	per	encoding)	[4]
Implementation	Improvements:
• GPU	operations	with	CUDA
• Algorithm-level	and	OpenMP	thread-level	

parallelism
• Big	number	handling	with	GMP	library
Programming	Languages:
• Python	(proof	of	correctness	sketch)
• C++	(better	memory	control)
• Julia	(possible	future	of	parallel	computing)
Tested	for:
• Summit	(and	future)	supercomputers
• Smaller	computing	clusters
• Personal	Laptop

Our	Contributions:
• First	parallelization	of	Dijk	et	al.’s	scheme
• First	to	incorporate	both	the	theoretical	
improvements

• Current	fastest	implementation	of	Dijk	scheme
• Our	comparison	of	languages/models	used	to	
help	design	and	choose	future	supercomputer	
software

Future	applications:
• Secure	machine	learning,	achieved	with	
homomorphic	matrix	multiplications

• Healthcare	transactions	
• Library	functions	that	hide	complex	operations	

With such a library and our achieved speed-ups,
fully homomorphic encoding will be more feasible
than ever for practical use by non-specialists.
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