
Parallelization of Fully Homomorphic Data Encoding
Jess Woods1, Ada Sedova2, Oscar Hernandez1

1Computer	Science	Research	Group,	Oak	Ridge	National	Laboratory						2Biophysics	Group,	Oak	Ridge	National	Laboratory

Introduction

[1]	Craig	Gentry	et	al.	Fully	homomorphic	encryption	using	ideal	lattices.	In	Stoc,	volume	9,	pages	169–178,	2009.
[2]	Marten	Van	Dijk,	Craig	Gentry,	Shai	Halevi,	and	Vinod	Vaikuntanathan.	Fully	homomorphic	encryption	over	the	integers.	In	Annual	International	Conference	on	the	Theory	and	Applications	of	
Cryptographic	Techniques,	pages	24–43.	Springer,	2010.
[3]	Jean-Sébastien	Coron,	David	Naccache,	and	Mehdi	Tibouchi.	Public	key	compression	and	modulus	switching	for	fully	homomorphic	encryption	over	the	integers.	In	Annual	International	Conference	on	
the	Theory	and	Applications	of	Cryptographic	Techniques,	pages	446–464.	Springer,	2012.
[4]	Jung	Hee Cheon,	Jean-Sébastien	Coron,	Jinsu Kim,	Moon	Sung	Lee,	Tancrede Lepoint,	Mehdi	Tibouchi,	and	Aaram Yun.	Batch	fully	homomorphic	encryption	over	the	integers.	In	Annual	International	
Conference	on	the	Theory	and	Applications	of	Cryptographic	Techniques,	pages	315–335.	Springer,	2013.

Figure	3:	Scheme	Operations
Figure	1:	Homomorphic	Operations

Figure	2:	Desired	Model

• Data	privacy	is	important	for	healthcare	data,	
secure	computation,	etc.

• Homomorphic encoding	scheme: supports	
operations	on	encoded	data	(Fig	1)

• Fully	homomorphic scheme: supports	arbitrary	
number	of	additions	and multiplications	[1]

Objective: Implement FHE scheme to allow user to
outsource computation (the function f) to some
“cloud” (separate user, supercomputer, etc.)
without revealing any data (Fig 2)

Problems:	time	and	memory
• Costly	large	integers	used	for	security
• Costly	“Recode”	operation,	used	to	mitigate	noise	
growth	(red	in	Fig	3)	

Hypothesis: A parallelized implementation will
mitigate data transformation costs and make fully
homomorphic encoding feasible

Scheme	used:	Dijk	et	al.’s	fully	homomorphic	
encoding	scheme	over	the	integers	[2]
• Operations	listed	in	Fig	3
Theoretical	Improvements:
• Compressed	public	key	size	[3]
• Batched	data	(multiple	bits	per	encoding)	[4]
Implementation	Improvements:
• GPU	operations	with	CUDA
• Algorithm-level	and	OpenMP	thread-level	

parallelism
• Big	number	handling	with	GMP	library
Programming	Languages:
• Python	(proof	of	correctness	sketch)
• C++	(better	memory	control)
• Julia	(possible	future	of	parallel	computing)
Tested	for:
• Summit	(and	future)	supercomputers
• Smaller	computing	clusters
• Personal	Laptop

Our	Contributions:
• First	parallelization	of	Dijk	et	al.’s	scheme
• First	to	incorporate	both	the	theoretical	
improvements

• Current	fastest	implementation	of	Dijk	scheme
• Our	comparison	of	languages/models	used	to	
help	design	and	choose	future	supercomputer	
software

Future	applications:
• Secure	machine	learning,	achieved	with	
homomorphic	matrix	multiplications

• Healthcare	transactions	
• Library	functions	that	hide	complex	operations	

With such a library and our achieved speed-ups,
fully homomorphic encoding will be more feasible
than ever for practical use by non-specialists.

Acknowledgements: This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for
Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship program. Contact: woodsjk@ornl.gov

Methods Results

Conclusion


