
Big Integer Operations with Dask



Specific Application
Problem to solve: Library for abstract algebra operations (e.g. matrix multiplication, 
addition) on VERY big integers (up to 2^10000) with python

 Other uses for big integers:

● Cosmology
● Hash tables
● Random numbers/probability 

simulations
● Exact precision
● Exploring large math sequences

Type of Work:

● Partitioning lists/arrays of large 
integers

● Data parallel work
● Reducing lists in uncommon ways



Dask...

● Makes the program scalable for a large range of computers
● Makes already complicated abstract algebra easier to understand, prototype, 

and modify
● Can be “hidden” from user of larger applications/libraries
● Complex sequence of operations dealt with well by Dask task graph abilities

 



Architectures

● Summit Supercomputer
○ Per Node:

■ Two 22-core IBM POWER9 processors (4 threads per core)
■ Six NVIDIA Volta V100 accelerators

○ Tested on one, two, four nodes
● Raptor

○ Single node of Summit
○ Unrestricted by permissions and security firewalls
○ Tops out at 24 threads



Experiences with Dask Primitives

● Delayed
○ Good for work that has to be ‘computed’/seen often
○ Good for unique/fine-tuned operations
○ Large overhead when the data is big and must be “delayed twice”
○ You can’t “chunk” lists of delayed objects
○ Occasionally confuses scheduler if wrapped around outside library objects

● Bags
○ Good for preprocessing
○ Good at holding python objects (even different types)
○ Doing “custom” mappings and reductions
○ Do not preserve order, cannot be called by index



Experiences with Dask Primitives

● Arrays
○ Good for performing simple operations in parallel, comparative usability to parallel for loops
○ Figuring out best chunking and distribution takes some testing
○ Do not hold python objects (i.e. ints that don’t fit into int64) well
○ Combining/zipping arrays is limited to the blockwise() method, limited reduction ability, 

methods like random do not work for large numbers

● Compute/persist
○ Combined with automatic task graphs, provides excellent barrier method and ability to order 

and track operations



Efficient Task Graph



Dask Array Parallelization
Algorithm: calculation of deltas, then array multiplications, then large sum



Efficient Task Graph

. . .



Dask Delayed Parallelization
Algorithm: rounding and truncation of large 
rational number into binary array 
representation, part of a “noise reduction” 
process of larger matrix multiplication



. . .

“Inefficient” Task Graph

. . .



Compensating with Dask Delayed

Algorithm: summation of many binary 
representations in a “schoolbook” method, with 
carries, etc; part of the “noise reduction” process of 
larger matrix multiplication



Experiences with Dask Scheduling
● Single Machine Schedulers

○ Easy to get running anywhere (except, apparently, Summit)
○ Multiple options (threads, debugging option, etc)
○ Limited use

● Distributed Scheduler
○ Great speed-ups from vanilla python
○ Much more complicated to get running, Summit limits certain functionalities (job queue, etc.)
○ Errors are hard to debug: things that work fine on single machine schedulers sometimes 

malfunction due to strange package dependencies, unreplicatable network/worker errors, etc.

● Different schedulers can be used for different parts of the code, if you have a 
computer that runs both

● Dashboard will not run from Summit (port blocked)



Dask Primitive Wishlist
- Fine tuning of Array.reduction method
- Expanded object handling for Arrays

or

- Ordered Bags
- Ability to ask for specific indices from bags

or

- Data Structure between those two things
- Better python object representation and operations



Python/Dask C++/OpenMP Julia

Overall Performance ~10x slower than C++ Excellent Surprisingly comparable 
to C++

Speedup/Scalability Good speed up from 
vanilla python, though 
some operations do better 
than others

Requires a lot of fine work, 
but there ends up being 
much less overhead; 
scales the best

Good for less work; 
somewhat unpredictable 
due to garbage collector

Programmability Everyone (inside and 
outside CS) basically 
already knows it

More complicated for 
non-CS people; invisible 
memory errors/race 
conditions easier to miss

Straightforward, much 
like Python; parallel 
programming is “built in”; 
but newish language

Portability Simple conversion 
between sequential, single 
machine parallelism, and 
distributed machine 
parallelism

Requires MPI for 
distribution, otherwise 
easy conversion between 
sequential and parallel

Requires code changes 
and MPI (for now) for 
distributed memory on 
Summit; installation 
challenges

Runs on Summit Mostly Yes Mostly



Benchmarks for specific multiplication operation


